A virtual pegging approach to the max-min optimization of the bi-criteria knapsack problem

نویسندگان

  • Fumiaki Taniguchi
  • Takeo Yamada
  • Seiji Kataoka
چکیده

We are concerned with a variation of the knapsack problem, the bi-objective max–min knapsack problem (BKP), where the values of items differ under two possible scenarios. We have given a heuristic algorithm and an exact algorithm to solve this problem. In particular, we introduce a surrogate relaxation to derive upper and lower bounds very quickly, and apply the pegging test to reduce the size of BKP. We also exploit this relaxation to obtain an upper bound in the branch-and-bound algorithm to solve the reduced problem. To further reduce the problem size, we propose a ‘virtual pegging’ algorithm and solve BKP to optimality. As a result, for problems with up to 16,000 items, we obtain a very accurate approximate solution in less than a few seconds. Except for some instances, exact solutions can also be obtained in less than a few minutes on ordinary computers. However, the proposed algorithm is less effective for strongly correlated instances.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heuristic and exact algorithms for the max-min optimization of the multi-scenario knapsack problem

We are concerned with a variation of the standard 0–1 knapsack problem, where the values of items differ under possible S scenarios. By applying the ‘pegging test’ the ordinary knapsack problem can be reduced, often significantly, in size; but this is not directly applicable to our problem. We introduce a kind of surrogate relaxation to derive upper and lower bounds quickly, and show that, with...

متن کامل

APPROXIMATE ALGORITHM FOR THE MULTI-DIMENSIONAL KNAPSACK PROBLEM BY USING MULTIPLE CRITERIA DECISION MAKING

In this paper, an interesting and easy method to solve the multi-dimensional  knapsack problem is presented. Although it belongs to the combinatorial optimization, but the proposed method belongs to the decision making field in mathematics. In order to, initially efficiency values for every item is calculated then items are ranked by using Multiple Criteria Decision Making (MCDA).  Finally, ite...

متن کامل

A hybrid DEA-based K-means and invasive weed optimization for facility location problem

In this paper, instead of the classical approach to the multi-criteria location selection problem, a new approach was presented based on selecting a portfolio of locations. First, the indices affecting the selection of maintenance stations were collected. The K-means model was used for clustering the maintenance stations. The optimal number of clusters was calculated through the Silhou...

متن کامل

A pegging approach to the precedence-constrained knapsack problem

The knapsack problem (KP) is generalized to the case where items are partially ordered through a set of precedence relations. As in ordinary KPs, each item is associated with profit and weight, the knapsack has a fixed capacity, and the problem is to determine the set of items to be packed in the knapsack. However, each item can be accepted only when all the preceding items have been included i...

متن کامل

Core problems in the bi - criteria { 0 , 1 } - knapsack : new developments ∗

The most efficient algorithms for solving the single-criterion {0,1}-knapsack problem are based on the concept of core, i.e., a small number of relevant variables. But this concept goes unnoticed when more than one criterion is taken into account. The main purpose of the paper is to check whether or not such a set of variables is present in bi-criteria {0-1}knapsack instances. Extensive numeric...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Comput. Math.

دوره 86  شماره 

صفحات  -

تاریخ انتشار 2009